skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buecherl, Lukas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jansen, N; Tribastone, M (Ed.)
    Improving the scalability of probabilistic model checking (PMC) tools is crucial to the verification of real-world system designs. The STAMINA infinite-state PMC tool achieves scalability by iteratively constructing a partial state space for an unbounded continuous-time Markov chain model, where a majority of the probability mass resides. It then performs time-bounded transient PMC. It can efficiently produce an accurate probability bound to the property under verification. We present a new software architecture design and the C++ implementation of the STAMINA 2.0 algorithm, integrated with the STORM model checker. This open-source STAMINA implementation offers a high degree of modularity and provides significant optimizations to the STAMINA 2.0 algorithm. Performance improvements are demonstrated on multiple challenging benchmark examples, including hazard analysis of infinite-state combinational genetic circuits, over the previous STAMINA implementation. Additionally, its design allows for future customizations and optimizations to the STAMINA algorithm. 
    more » « less
  2. Takano, Eriko; Breitling, Rainer (Ed.)
    Synthetic biology is a field at the intersection of biology and engineering. Inspired by engineering principles, researchers use defined parts to build functionally defined biological circuits. Genetic design automation allows scientists to design, model, and analyze their genetic circuits in silico before building them in the lab, saving time and resources in the process. Establishing synthetic biology’s future is dependent on genetic design automation, since the computational approach opens the field to a broad, interdisciplinary community. However, challenges with part libraries, standards, and software tools are currently stalling progress in the field. This review first covers re- cent advancements in genetic design automation, followed by an assessment of the challenges ahead, and a proposed automated genetic design workflow for the future. 
    more » « less
  3. In synthetic biology, combinational circuits are used to program cells for various new applications like biosensors, drug delivery systems, and biofuels. Similar to asynchronous electronic circuits, some combinational genetic circuits may show unwanted switching variations (glitches) caused by multiple input changes. Depending on the biological circuit, glitches can cause irreversible effects and jeopardize the circuit’s functionality. This paper presents a stochastic analysis to predict glitch propensities for three implementations of a genetic circuit with known glitching behavior. The analysis uses STochastic Approximate Model-checker for INfinite-state Analysis (STAMINA), a tool for stochastic verification. The STAMINA results were validated by comparison to stochastic simulation in iBioSim resulting in further improvements of STAMINA. This paper demonstrates that stochastic verification can be utilized by genetic designers to evaluate design choices and input restrictions to achieve a desired reliability of operation. 
    more » « less